

Abstracts

Cascode connected AlGaN/GaN HEMTs on SiC substrates

B.M. Green, K.K. Chu, J.A. Smart, V. Tilak, Hyungtak Kim, J.R. Shealy and L.F. Eastman.
"Cascode connected AlGaN/GaN HEMTs on SiC substrates." 2000 *Microwave and Guided Wave Letters* 10.8 (Aug. 2000 [MGWL]): 316-318.

We report on the fabrication and characteristics of cascode-connected AlGaN/GaN HEMTs. The HEMTs were realized using Al_{0.3}Ga_{0.7}N/GaN heterostructures grown on 6-N semi-insulating SiC substrates. The circuit reported here employs a common source device having a gate length of 0.25 μ m cascode connected to a 0.35 μ m common gate device. The gate width of each device is 250 μ m. The fabricated circuit exhibited a current density of 800 mA/mm and yielded an f_T and f_{max} of 24.5 and 56 (extrapolated) GHz, respectively. Large signal measurements taken at 4 GHz produced 4 W/mm saturated output power at 36% power-added efficiency. Comparisons to the performance of a 250/ μ m³ common source device taken from the same wafer show that the cascode configuration has 7 dB more linear gain and 3 db more compressed gain than the common source device at 4 GHz.

[Return to main document.](#)